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Preface

Space exploration and the problems associated with this exciting

adventure have fascinated me for years. 14 search for a thesis topic in

this area ended when 1st Lieutenant L. L. Bacciarelli introduced me to

the subject of stabilization of man in space, a phase of space explora-

tion whose theoretical aspects provided the challenge for which I had

been looking. Capt. John C. Simons' introduction into some practical

aspects further motivated me to study this phase of the Iian-In-Space

program. In particular, he expressed the requirement for iore inforuation

bridging the gap between anthropometric data and man's dynamic response

characteristics needed for engineering design. The study has proven to

be immensely interesting and an education in the field of weightlessness.

This report is the result of my attempt to describe a matheatical

model which would represent flexible, weightless man and his dynamic re-

sponse characteristics in a zero gravity environment. i4le no closed

form, general solutions are given for the more complex, non-linear dy-

namics problems, several idealized problems are investigated which have

direct relation to the actual case. An attempt has been made to present

this information in a form useful to both the human-factors specialist

and the design engineer.

I would like to express my thanks to Capt. Simons of the Behavioral

Sciences Laboratory, Aerospace Medical Research Laboratories, Wright-

Patterson AFB, Ohio, and Lt. Bucciarelli, my thesis adviser, for their
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sincere interest, suggestions, and guidance throughout this study. Also,

my thanks to Technical Sergeants -Harold Espensen and William Sears for

conducting and serving as subjects in the zero-gravity experiments, to

Mr. Charles E. Clauser for his suggestions on the math model, and to

A/IC Paul Bunch for his assistance with some of the photographic work.

Finally, I would like to thank my wife, Evie, for her sacrifice,

interest, and encouragement, and my daughter, Edie, for her frequent, but

usually welcomed diversions.

Charles R. Whitsett, Jr.
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Abstract

A mathematical model is developed to approximate the mass distribu-

tion, center of mass, moments of inertia, and degrees of freedom of a

human being by segmenting the body into 14 idealized masses. An analysis

of the model reveals that the moments of inertia about the segment mass

centers of the hands, feet, and forearms are negligible, when compared

to the total body moments of inertia. However, the moment of inertia of

the torso about its mass center is 1/' to 35i of the total body moment

of inertia. By neglecting the local moments of inertia of the smaller

segments, a simplified method is achieved for calculating the moments of

inertia and center of mass when the body posture changes. An investiga-

tion of some selected problems in thrust misalignment, maneuvering,

free-body dynamics, stability of rotation, and torque application reveals

their applicability in predicting analytically man's dynamic response

characteristics in space. Preliminary experiments indicate that the

torque which weightless man can exert by applying a sudden twist to a

fixed handle varies as a half sine wave, and is approximately 67% of his

maximum torque under normal gravity conditions.

viii
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SOME DYNAMIC RESPONSE CiARAOTERISTIC8

OF '-EIGhTLESS MAN

I. Introduction

Subject and Purpose

The subject of this study is the dynamic response characteristics

of weightless, flexible man. The purpose is to develop a mathematical

model to represent the human body, and to use this model to predict ana-

lytioally man's mechanical behavior to some selected problems associated

with weightlessness.

Subject Backxround

As space operations are extended, man will be required to perform

supply, assembly, maintenance, and rescue missions while weightless. 14Ln

in space, floating free from his space vehicle will experience degrees of

freedom never encountered on earth. While Nsituated in a state of im-

ponderability" (as Petrov has described weightlessness, Ref 15), any

force applied by or to man will result in translational and/or angular

accelerations. For instance, the force of an ordinary sneeze is sufficient

to tumble the average individual at a rate of 1/5 of a revolution per

minute, if unrestrained (Ref 21).

If the free-floating space worker is to move from one point to

another and be able to work when he gets there, he must be provided with

1
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a personal propulsion and stabilization device (Refe 9, 17, and 1).

Before such a system can be developed, however, certain design parameters

must be established. These parameters are dependent upon the biomechan-

ical properties of the human body. In order to bridge the gap between

anthropometric data and the dynamic response characteristics needed for

engineering design, a mathematical model is created. ODynamic response

characteristics" is used here to describe those mechanical effects which

result when the human body is subjected to unbalanced forces. The model

must then incorporate the biomechanical properties of the human body.

Many of these biomechanical properties change when the body shape

changes. For instance, when man moves his appendages, his center of mass

and moments of inertia change. The model must represent these variations

also. Because of the complexity and flexibility of the human body, any

analytical representation is only an approximation. This difficulty has

led two bio-engineers (Ref 3) to describe man as a "non-symmetrical,

fluid-filled sack of variable shape containing a large air bubble."

scope

This study will be concerned with only those major dynamic effects

which result when the human body is subjected to unbalanced forces, and

not the resulting physiological and psychological effects.

A general survey is made of some selected free-body dynamics prob-

lems in which the kinematics of the body are simple, and where elasticity

and damping of the body structure are neglected.

The experimental efforts are of preliminary nature and serve as

guidelines for future study.

2
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Development

The problem of describing or predicting the dynamic response charac-

teristics of weightless man is approached in three phases&

1. Description and analysis of a mathematical model

2. Analytical prediction of some selected dynamic response
characteristics

5. Comparison of some analytical results with experimental data

In accordance with the three phases of this study, Chapter II is

devoted to the development of a mathematical model which will incorporate

the biomechanical properties of man based on the anthropometry of any

given subject. An analysis is made, using a model based on the U.S.A.F.

Nmean man," to determine the contribution of each of the various body

segments to the total body moments of inertia. Based on this analysis,

a simplified method of calculating the changes in moments of inertia and

center of mass when the body posture changes is developed.

In Chapter III some selected dynamics problems are investigated

which can be used to analytically predict some of the dynamic response

characteristics of weightless man.

The results of the experimental validation phase of this study are

described in Chapter IV.

Some concluding remarks about the objectives of the study and rec-

ommendations for future work are given in Chapter V.
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II. The Mathematical Mdel

Weightless man will undergo transient angular and linear accelera-

tions and decelerations as he is subjected to unbalanced external forces

and moments. Internal forces and moments will be generated and reacted

throughout the body when he moves his appendages. The mechanical re-

sponse of the human body will depend upon the biomechanical properties

of the body with respect to these special excitations. In order to de-

velop a mathematical model which can be used to predict analytically how

the human body will respond, these same biomechanical properties must be

incorporated into the model.

The human body is, however, a very complex system of elastic masses

whose relative positions change as the appendages are moved. To repre-

sent this system in exact analytical terms would require an infinite

number of infinitesimal, rigid masses and an infinite number of degrees

of freedom. 'Degrees of freedom* refers to the minimum number of inde-

pendent coordinates necessary to completely specify the position of a

system in space. As larger and fewer masses are chosen, the representa-

tion becomes less complex but les accurate.

The problem of developing a mathematical model reduces to a determi-

nation of the optimum number and shape of the idealized masses or body

segments on which the model's dynamic response characteristics are based.

The optimum configuration of the model is determined on the basis of two

criteria:

1. Simplicity - a minimum number of components of simple geo-

metrical shape consistent with an accurate representation of the human

body.

4
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2. Adaptability - a model which can incorporate the biomeohanical

properties of any particular individual.

A simple, but reasonably accurate, model is desired to simplify

analytical solutions to the related dynamics problems and make it easier

to interpret physically the results. The degree of accuracy required

depends upon the particular problem being investigated. For instance,

when the flight characteristics of a fighter aircraft are computed, the

pilot is assumed to be a point mass at some location in the fuselage

since the dynamic characteristics of the man are negligible when compared

to those of the aircraft. However, when a propulsion and stabilization

device for the space worker is considered, then man's dynamic response

characteristics become very important. The dynamic characteristics of

the whole system will depend primarily on the man since he will be larger

in size and mass than the propulsion and stabilization unit. Since a

model for the latter application is desired for this study, a more refined

model is developed than has been previously described (Ref 14, 18).

The propulsion and stabilization unit will probably be designed and

built for each space worker; hence, it is desirable to know the dynamic

response of each space worker. The mathematical model can be made to

represent an individual by basing the model on the biomechanical properties

of that individual.

Development of the Model

The most important biomechanical properties which will affect the

dynamic response characteristics of man, and hence must be incorporated

in the model, area
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1. the total mass and mass distribution

2. the location of the center of mass

5. the moments of inertia

4. the elasticity and damping of the body structure

Item numbers 2 and 3 vary as the body position changes; hence, this v -io

ation will also affect the response characteristics. Item number 4 be-

comes significant only when forces are applied very suddenly such as

during an impact, and is not included in this study.

In order to develop the mathematical model, the human body is

idealized based on the following assumptions:

1. The human body consists of a finite number of masses (or segments)

and a finite number of degrees of freedom (hinge points).

2. The segments are rigid and homogeneous.

3. Each segment is represented by a geometric body which closely

approximates the segment's shape, mass and center of mass, length, and

average density.

The dynamic properties of these rigid, homogeneous, geometric bodies can

be exactly determined.

Configuration of the Model. The mathematical model may be thought

of as a system of rigid, honogeneous bodies of relatively simple geo-

metric shape, hinged together in such a manner as to resemble the human

body. For this study a I segment model is chosen. The dividion of the

body into segments and the representative geometric bodies are shown in

Figure 1. The hinge points are shown in Figure 2 and are defined as

follows :

A. Neck - hinged only at the base of the neck (cervical)

B. Shoulder - hinged at the arm-shoulder socket

6
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SEGMENTED MAN AND MODEL
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0. Elbow - hinged at the elbow joint

D. Hip - hinged at the leg-pelvis socket

E. Knee - hinged at the knee joint

The ankle and wrist joints are assumed rigid since their motion produces

very slight variations in the total center of mass and moments of inertia.

Z 0 CENTER OF MASS Z
•HINGE POINT

04 

# D

05 5

06

08

FIGURE 2

LOCATION OF CENTERS OF MASS AND HINGE POINTS
OF THE HUMAN BODY

The model described has 24 degrees of freedom; six rigid body degrees

of freedom plus 18 local degrees of freedom. The six rigid body degrees

of freedom refer to the position and orientation of the body axis system.

The other 18 degrees of freedom result from the nine hinge points, each

8
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with two degrees of freedom. For instance, if a set of spherical co-,

ordinates is located at one shoulder hinge point, two angles must be

specified to exactly locate the position of the upper arm.

0
The body axes system, shown in Figure 3, consists of a set of three

orthognoal axes whose origin is always at the body center of mass and

whose orientation remains fixed with respect to the axis system of the

elliptical cylinder, as shown in Figure 4. The Z-axis remains parallel

to the cylindrical axis, the x-axis perpendicular to the major and cy-

lindrical axes, and the y--axis perpendicular to the minor and cylindrical

axes. The positive directions and rotations are indicated in Figure 5.

A local body axis system is defined as a secondary orthogonal axis

system located at the center of mass of each segment. Emch is oriented

in the same direction as the primary body axis system in the normal po-

sition defined in Figure 3 and remains fixed in position and direction

with respect to that respective segment.

Biomechanical Properties. In order for the model to represent the

dynamic response characteristics of man, certain biomechanical properties

must be incorporated into the model. As stated earlier, these properties

include mass, center of mass, average density, body dimensions, and

moments of inertia. fhen these properties are used to define the proper-

ties of the geometric bodies which make up the model, the model will

reflect the dynamic response characteristics of man. Some problems arise

when the model is to represent a particular individual, since methods have

not been developed for determining all these properties from living sub-

jects. Fortunately, the most important property, body dimensions, can

9
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be readily attained. Hence for the model developed, only body measure-

ment data (lengths of the segments, depths, breadths, and hinge point

locations) is taken from the living subject. All other properties arr

estimated by the most reliable statistical methods available for various

weight and body build groups. The methodology of obtaining the bio-

mechanical properties of all the segments is described as follows.

The mass of all segments, except the head and torso, is estimated

from the Regression Equations given by Barter (Ref 1:6) and are simmarized

in Table I. The head and torso equations are not given separately, there-

fore a method of determining the mass of these segments is developed herota.

Table I

Regression Equations for Computing the Mass (in Kg)
of Body segments (Ref 1:6)

Body Segment Regression Equation

Both Upper Arms 0.08 x Total Body Weight - 1.3
Both Lower Arms 0.04 x Total Body Weight - 0.2
Both Hands 0.01 x Total Body Weight + 0.3
Both Upper Legs 0.18 x Total Body Weight + 1.5
Both Lower Legs 0.11 x Total Body Weight - 0.9
Both Feet 0.02 x Total Body Weight + 0.7

The center of mass location for the upper and lower arms and legs

is taken directly from Dempster (Ref 4:194), and is given in Table D-I,

Appendix D. For the other segments the center of mass is inherently at

one-half the length and on the axis of symmetry.

The average density for all segments is also based on Dempster's

study, and listed in Table D-I.

The lengths of the segments (defined as the vertical dimension of

each segment as oriented in Figure 1) are based on the body measurement

11
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data determined as indicated in Table II. The points and methods of

measuring are given in Ref 12. Alternatively, the lengths may be taken

directly from Ref 12 for a particular percentile group.

Table II

Segment Length from Anthropometry

Note: All heights are defined in Ref 12.

Segment Length

Head Stature - Cervical Height
Torso Cervical Height - Pemale Height
Upper Arm Shoulder Height - Elbow Height
Lower Arm Elbow Height - Wrist Height
Upper Leg Penale Height - Kneecap Height +1.5 in.
Lower Leg Kneecap Height - ateral Malleolus Bt. -1.5 in.
Foot Lateral Malleolus Height

The equations for calculating the mass moments of inertia for all

the geometric bodies used in the model, except the frustum, are found in

most mechanics textbooks (for example, Ref 5) and engineering handbooks

(such as Ref 13). The equations for the mass moments of inertia of a

frustum of a right circular cone are developed, in parametric form based

on the center of mass location, in Appendix A. All equations are sum-

marized in Table III.

The other basic dimensions required for the moment of inertia equa-

tions (such as the diameter, major axis, and minor axis) depend upon the

particular segment. Their determination is included with the following

general discussion of the geometric bodies chosen to represent each

particular segment of the human body.

1. Head, Hand, and Foot. The motion of the neck is small in com-

parison to that of the head. Hence, the neck is considered to be

12
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Table III

Formulae for Oalculating Local Moments of Inertia
of the Segments

Moments of Inertia
Segment IXC.. lY,.

Head n

Torso rnm(3ot'+ Q~ ~ (3b~ 6ztk n)0

Upper/Lower r[At"4Be]i X Zm A
Arms & Legs r C+qi

Hand M 1'

Foot rA C zc + Y

rigidly attached to the head. The head-neck combination is then repre-

sented by an ellipsoid of revolution. The major axis 2a is equal to the

length dimension given in Table II. The minor axis 2b is found from

2b head crcumference (1)

since the cross-section is circular.

The mass 'mu is given by

m = r ob 2  (2)

where £ is the average density of the head.

The mass of the hand is very small in comparison to the whole body

(about 0.7%) and even though its shape varies considerably, the effect

of this variation is negligible. Hence, the hand is greatly simplified

and represented by a sphere. From

m 
( 3

-- 8 q[3
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we have

diameter d (4)

The mass of the foot is quite small in comparison to the whole body

(about 1.5%), hence it too is greatly simplified. The foot is represented

by a rectangular parallelepiped whose height and width equals the length

dimension for the foot given in Table II. The depth is equal to the

instep length Ocu (Ref 12).

2. Torso. The torso makes up approximately 48.5% of the total body

mass. Qonsequently, its biomecluxnical properties will have a significant

effect on the total body response.

An elliptical cylinder is chosen to represent the torso. The dimen-

sions of the ellipse of the cross-section are given bys

Major axis (a) - Equal to the average of the body breadth measured

at the chest, waist, and hips.

Minor axis (b) - Equal to the average of the body depth measured at

the chest, waist, and hips.

In order to further substantiate the choice of an elliptical cylinder

to represent the torso, a more detailed study was made to compare the

average cross-sectional area of the human body to that of an ellipse

based on the average breadth and depth.

Full scale cross-sectional area projections of the torso of a living

subject of average build were provided by the Anthropology Section,

Behavioral Sciences laboratory, 6570th Aerospace Medical Research abora-

tories. These were obtained by sterophotogrammetry (a photographic method

of making contour maps of the human body). The cross-sectional areas at

the chest, waist, and hip were measured with a planimeter. The average

14
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area for subject number 35 was found to be 107.7 square inches. The

breadth and depth were measured at the corresponding levels and averaged.

The area of the representative ellipse was found to be 106.0 square

inches from

Area J ell tpse 7 rQb (5)

where

aCL aypero-ge )recactl,(6

o overaqe depth (7)

Of course the comparison for just one subject does not in itself justify

the assumption that the torso can be represented by an elliptical cylinder;

it does indicate that this is a reasonable approach.

3. Limbs. A frustum of a right circular cone is chosen to repre-

sent the upper and lower arms and legs because its center of mass can be

made to coincide with that of the segment it represents. Parametric

equations for moments of inertia are developed in Appendix A which are

independent of all segment dimensions except length (given in Table II).

A sample calculation is also given in Appendix A which illustrates the

use of the parametric equations. Since there is no anthropometric data

which coincides well with the height of the knee joint, this dimension

is estimated by substracting 1.5 inches from the kneecap height.

4. Hinge points. The hinge points are assumed to be on the center

line of the segments and are defined in Table IV.

Analysis of the Model

Since the center of mass and moments of inertia depend upon the posi-

tion of the body segments, an analysis based on only one position is likely

15
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Table IV

Location of Hinge Points from Anthropometry

Note: All measurements are defined in Ref 12.

Hinge Coordinates*
Point

Y z

Neck o Cervical Height

Shoulder _ 1/2 Biacromial Diameter Shoulder Height

Elbow _ 1/2 Biacromial Diameter Elbow Height

Hip _ 1/4 Hip Breadth Penale Height

Knee 1- i/4 Hip Breadth Kneecap Ht. - 1.5 in.

All X coordinates are zero

to lead to some false conclusions. This section presents an analysis

of the proposed mathematical model in two quite different positions.

Numerical Values. Numerical values of the biomechanical properties

of the model are determined for the Air Force Omean man" (height 69.11

inches, weight 163.66 pounds) as described in Anthropometry of Flying

Personnel-IM (Ref 12). The mass, average density, length, and center

of mass location of each segment are given in Table D-I. From this data

the coordinates of the hinge points and segment centers of mass as de-

fined in Figure 2 are determined and presented in Table D-II. Note that

the origin of the coordinate system in Figure 2 is shifted to floor level.

The coordinates in Table D-II are given in terms of this transposed co-

ordinate system since all heights in Reference 12 are based on distance

from the floor. From the data in Tables D-I and D-II and the formulae

in Table III, the local moments of inertia are calculated and given in

16
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Table D-III. The moments of inertia of each segment about the body axes

are found from the parallel axis transfer equation

TI ,9 +rmnd ? (8)

where Iis the local moment of inertia, "m' is the mass of the segment,

and 'do is the distance between the body axis and a parallel axis through

the center of mass of the segment. These values are given in Table D-III

also.

Analysis. The dynamics of a rotating body in space depends primarily

upon two faotorst the center of mass location of the whole body; and

the moments of inertia of the whole body about axes through the body

center of mass.

The variation of the center of mass of the human body has been

studied extensively (Ref 11) and can be accurately predicted for a given

body position without too much difficulty. The center of mass of the

model is found to lie 39.09 inches from the floor or 56.6% of the body

length. This falls within the 55 to 57.44 range determined experi-

mentally by Dempster (Ref 4) and agrees closely with an average of 55.6%

measured by Swearingen (Ref 20) on five living subjects.

Predicting the moments of inertia is somewhat more involved and

likely to be less accurate. Therefore an analysis is made of the mathe-

matical model to determine:

1. which segments have the greatest effect on the total moment

of inertia

2. the effect of approximation errors due to representing the

segments by geometrical bodies

5. and which segments can be further simplified without a signifi-

cant loss in accuracy.

17
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The first position (position 'a", Figure 5) considered is the norael

position, standing erect with arms at the sides. For the second position

(position "b', Figure 5) the arms and legs are drawn up close to the

torso to give a near-ainimum moment of inertia about the x- and y-axes.

The moments of inertia for position "b" are calculated in much the same

way as for position "an and presented in Table D-III. It is noted that

for this new position, the center of mass moves 7.0 inches towards the

head along the z-axis and 1.9 inches forward along the x-axis.

30* 30*

(b)
(a) (c)

FIGURE 5

BODY POSITIONS

The moment of inertia of the whole body about a given axis is given

by the sum of the moments of inertia of all segments about that axis.

The moment of inertia of each segment as given by Eq 8 consists of two

parts which are defined as follows:

18
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Local Term The moment of inertia of the segment about an

axis through its center of mass parallel to the given axis

Transfer Term rA S A quantity given by the product of the mass

of the segment times the square of the perpendicular distance

between the two parallel axes.

Since the local terms are the most tedious to compute, it is of

interest to see what contributions they make toward the total moment of

inertia. In Figure 6 a comparison is made between the local and transfer

terms for the two positions. Since these quantities are nearly the saine

about the x- and y-axes, the x-axis is not indicated.

LOCAL TERM
MTRANSFER TERM

13%41.6% Z
32-6

43.5% ..

86.5% 56.5%

58.4 64

ABOUT THE Y-Y AXIS ABOUT THE Z-Z AXIS

FIGURE 6
COMPARISON OF LOCAL TO TRANSFER MOMENT OF INERTIA TERMS

(EXPRESSED AS A PER CENT OF THE TOTAL MOMENT OF INERTIA)

Next, it is of interest to see what contribution each segment makes

toward the total moment of inertia and what effects the local and trans-

fer terms have on this quantity. This information is presented graphi-

cally in Figures 7 and 8.
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E3 LOCAL TERM

E3 TRANSFER TERM
POSITION (a) POSITION (b)

,. HEAD
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C3 LOCAL TERM

0 TRANSFER TERM

POSITION (a) POSITION (b)

HEAD

TORSO
_____ ______ TRO______ -'

UPPER ARMS

LOWER ARMS

HA NDS

UPPER LEGS

LOWER LEGS

FEET

30 20 10 00 10 20 30
PER CENT PER CENT

FIGURE 8

PER CENT OF TOTAL MOMENT OF INERTIA ABOUT THE
Z-Z AXIS FOR EACH SEGMENT
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Oonclusions. A close look at Figures 6, 7, and 8 reveals some im-

portant information. In general the local moment of inertia terms can

not be neglected, particularly about the z-axis. Hoever, it can be seen

that the contribution of the local term for several segments is zero or

negligible. Hence, it can be concluded that it is unnecessary to com-

pute the local moment of inertia for the hands, lower arms, and feet

since their sum is less than the errors due to simplifying the hxman

body. It can be further concluded that the geometric representation for

the upper arms, upper and lower legs, and head need not be too accurate.

For instance, a 33% variation in the moment of i4ertia of the upper arm

would change the total moment of inertia (for position lam) about the

x-axis only ± 0.1%. The total moment of inertia of the torso must be

computed with much more care since it may contribute 10% to 35% of the

total moment of inertia depending on the axis and position.

Simplified Approach. Based on the above conclusions, a simplified

method is developed for computing the moments of inertia for various

body positions. Starting with the moments of inertia for position "a"

computed above as initial conditions (IXO 's IYO O, ), this method yields

the moments of inertia for any other position(I,IyIli)by taking into

account only the changes in the transfer terms and the relative position

of the body axis system. This approach greatly simplifies the mathe-

matics, and although it neglects the changes in the local tends, there

is only a slight reduction in accuracy.

The moment of inertia of the model (consisting of wpm masses or seg-

ments) about the x-axis for position 'ag is given by

P P (9)
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When the body position changes, the moment of inertia about the sama

axis is given by

IX,,+ T,rI + (10)
'- ALC.

To find the moment of inertia about a parallel axis through the center

of mass for this new position, the Parallel Axis Transfer Theorem is

used

I = I , + M 2. +

now
I + M (q' ) : I oc + + (12)

Subtracting Eq 9 from Eq 12 p P

IX ~ +i~ M I(= ?+y(9 +

Assuming the local terms do not change
P P

j=1 i o

and Eq 13 becomes

I = (15)

Now if only On" masses change position, the coordinates of the 'p-no

masses will remain the same and will cancel out. Then

MH I + (16)

In a similar manner the equations for the moments and products of inertia

about the other axes are found to be (Ref 8)

I =I 1 - X(-Xi,+ ) g:) M (17)

j= 1
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1Yjz mi Nc -4oO M i)(20)

rri [I* z m (Ij x ) -a. x (21)

where

;X-- (22)
M

~ I.-(23)

~=A~ 1  (~ -(24)

mYi - mass of the ith segment

' 1, --- coordinates of the center of mass of the ith segment after

some change

"i i coordinates of the centers of mass of the ith segment before

some change

M total mass

and On" is the number of segments which change positions from the initial

conditions. For instances, if one arm is raised from position #an, the

center of mass of the upper and lower arm, and hand will change. Three

segments are involved so n= 3 and m, might refer to the mass of the

upper arm, V". to the mass of the lower arm, and P13 to the mass of the hand.

It is pointed out that Eqs 22, 23, and 24 are exact and will always

yield the coordinates of the new center of mass with respect to the

center of mass location for position "an.

Up to this point, nothing has been said about products of inertia

(Iv, ILjY 1 I ) • It should be realized that while in position NaN
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the body axis system coincides with the principal axes of inertia and

there are no products of inertia, this will not be true in general.

Principal axes of inertia are defined as a set of orthogonal axes about

which the products of inertia are zero. In factg in position Obw the

principal axes are tilted forward (rotated about the y-axis in the nega-

tive direction) approximately 80 from the body axes. Therefore, a

product of inertia 1y exists.

From Bqs 16, 17, and 18 the moments of inertia of the model are

computed for positions "b" and 'c". These results are compared with

exact results taking the local terms into account in Table V.

Table V

Oomparison of Moments of Inertia from Exact
and Approximate Methods

Moments of Inertia Slug-ft2 )

Ix for ly for Iz for
Position Position Position
Wb ---- o-F C Obs e

Ixct

Method 5.0496 12.22.5 2.944 8.8430 1.0004 3.6210

Approx-
imate

Method 3.0845 12.225 2.9445 8.7917 o.9668 3.5356

Error +1.14% 0.000 0.00% -0.58% -3.36% -2.36%

It should be noted that the approximate method yields exact results

for I, position "c", and Il, position "bl. This occurs because there

is no change in the local moment of inertia terms Ix ,. .for position nc

and IYy.,.for position "b'.
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III. Analytical Results

The problems of dynamics facing the weightless man are many and

varied. 'Free-floating man is indeed an intimate man-machine unit, a

single vehicle-driver component capable of fantastic motion behavior.'

(Ref 19) In this chapter several important problems are reviewed and

analytical results are presented.

Thrust Misalignment

In order for a man (initially at rest) to move between two points

in space, some external force must be applied. If translation is to

take place without rotation, the resultant force must act through the

man's center of mass. Since man is not a rigid body, flexing and bend-

Ing the various appendages will cause the center of mass to change posi-

tion with respect to the body. Therefore, it is unlikely that any single

force device would act through the center of mass. The case of a single

force device rigidly attached to the space worker so that a constant

force is applied, not through the center of mass provides an interesting

space dynamics problem. It has practical application to any propulsion

and stabilization device since thrust misalignment might occur during a

malfunction of the system.

Consider a thrust misalignment which produces a constant moment

about one of the principal moment of inertia axes. If Ix  IY and the

moment is applied about the y-axis, the resulting motion will be a spin

about the y-axis and the center of mass will move in the plane of the

x-z axes. Proof of this statement and complete derivation of the equa-

tions of motion are given in Appendix B. Even for this restricted
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two-dimensional problem, a closed form solution could not be achieved.

However, the equations of motion were non-dimensionalized and by apply-

ing the Runge-Kutta Method (Ref 16) a machine solution was achieved on

the AFIT IBM 1620 Digital Computer. A non-dimensional plot of the ve-

locities is given in Figure B-i and the trajectory in Figure B-2.

It is interesting to note that for this special case of plane motion,

the trajectory always approaches a 
straight line which is inclined 50

to the original heading. While the angular velocity increases as long

as the misaligned thrust is applied, the linear velocity of the center of

mass approaches a limit as can be seen in Figure B-i.

As an example, if the AF Imean man' is subjected to a 10-pound

thrust misaligned 7.0 inches along the z-axis, in the direction of the)

x-axis, a constant magnitude moment of 70 in-lbs is applied about the

y-axis. When the values of moments of inertia for position 'bo are taken

as principal moments of inertia, a solution to this problem (see the ex-

ample problem at the end of Appendix B) indicates that in 5 seconds, the

man will be accelerated to an instantaneous angular velocity of 96 rpm;

he will have completed four revolutions, and reached a linear velocity

of 1.6 ft/sec. After 10 seconds, he will have made almost 16 revolutions,

and will be rotating at a rate of 191 rpm while moving at a rate of

1.7 ft/sec.

Maneuvering

A problem somewhat similar to the misaligned thrust problem is con-

trolled rotation or maneuvering. The space worker will be equipped with

a propulsion and stabilization unit to maneuver around his or other space
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vehicles. The question arises, is there an optimum way to perform a

particular maneuver?

In this section a very simplified problem is analyzed with the ob-

jective of showing that there is a considerable variation in the fuel

required to execute a given maneuver. The optimum condition is achieved

when the maneuver is completed with minimum fuel consumption.

Consider the following hypothetical problem. The space worker is

moving with a constant initial velocity Vo (relative to the space vehicle),

and he desires to make a 900 change in his flight path. How does he

direct his thrust (thrust vector) such that after a period of time T, he

is moving at the same rate Vo perpendicular to the original heading, and

a minimum amount of fuel is consumed?

Three Thrust Programs. Three thrust programs are analyzed based on

the following assumptions:

1. The man (including the maneuvering unit) is a mass particle.

2. The period "To of thrust application is small so that the mass

sma of the system is considered constant.

These assumptions reduce the problem to one of particle dynamics and

neglect problems associated with the orientation of the man and how the

particular thrust program is achieved. In all three problems the same

thrust is applied although the length of time and direction vary. Since

fuel consumption will depend solely upon the time applied for a constant

magnitude thrust, the problem becomes one of determining the minimum

thrusting time OT".

Oase I. First consider the case in which the thrust F0 is applied

in direct opposition to the initial motion until this motion ceases.
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Then Fo is applied perpendicular to the original flight direction until

a speed Vo is reached. From Newton's Equation

S j A(MV) (25)

and integrating with respect to time (F = -Fo)

F.t MiV -t C (26)

Applying the initial conditions t a O, V = VO

+ = M (Vo -V) (27)

Now at t = tj , V a 0 , so that the time to stop is t 1

M V. (28)
F.

By the same approach, the time to accelerate to Vc again is

M = VO (20
Fotherefore, the total thrusting time T is given by

T + i =L \I. Vo (30)

Fo
If the initial velocity is in the x-direction and the fiial velocity is

in the y-direction, the velocity components Vx and Vy will vary as shown

in Figure 9, for Case I. While no values are shown for the plots in

Figure 9, all are drawn to the same scale so that the results may be

compared.

Case II. Suppose the decelerating force F. is applied at a 450

angle in opposition to the initial motion so that one component of the

force (Fx - -0.707F o ) acts in direct opposition to the original motion.

Then the other component (Fy = 0.707Fo ) will act normal to the initial

flight path. Writing Newton's Equation in component forn

AdMVx (31)
t

and integrating with respect to time (Fx - -0.707F o )

-0.707 PL- mVx + C (32)
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Applying the initial conditions at t = 0, Vx m V0

Now at t = tj , Vx n O, the time to stop is

" 1. = 1. _VY% Vo (34)

By a similar 
approach

Fo
Now Fx and F. are applied simultaneously so that the complete maneuver

is completed during time t 1 , or

t,= -,L. = T (36)

The variations of Vx and Vy are shown in Figure 9.

Case III. Consider now a case in which the thrust is applied normal

to the flight path until the man has completed a 900 turn. Then the

thrust Po will be equal to the centrifugal force or
F.o - MV' (37)

R

where R is the radius of curvature. Since there is no force applied

tangent to the flight path, V. remains constant and the flight path is

an arc of a circle of radius R. The arc will be one-fourth of a circle.

The time to cover this distance is given by

S _ r/z R _ R (38)
O VO ?0 ,v0

but from Rq 37

R MV'- (39)
F

so that Ik 38 becomes
V . (4o )

and since t = T

T =157 F (41)

The variation of the x and y components of the velocity are shown in

Figure 9 also.
30



GAWkech-62-7

CASE I

V 0 XI.
5 iY

0
w

0 - TIME
ti T

CASE II

w

0 TIME
tl= tp n T -I

CASE "l-

Vo r vx  VY

w
0 TIMEILl I

0 ti tp T TM

FIGURE 9

VELOCITY v.s. TIME FOR THREE TURNING MANEUVERS
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Conclusions. While no attempt is made to optimize the above plane

motion problem, some significant differences in maneuvering times are

noted. If Case II is taken as a standard of comparison, we see that

Case I takes 41.5% longer to execute the 900 turn and Case III takes

11.0% longer. In terms of fuel consumption, Case I appears to be quite

impractical. It should be noted that no restriction is made on the dis-

tance required to complete the maneuver. Since this distance will vary

for the three cases, any such restriction would require a reanalysis of

these thrust programs.

Free-Body Dynamics

Free-floating man cannot, without some external force, affect the

motion of his center of mass; but he can change his attitude by properly

manipulating his appendages. Nine maneuvers have been proposed for

achieving self-rotation by Kulwicki (Ref 14).

In Appendix C a more general equation of motion is derived based

on conservation of angular momentum (i.e., in the absence of any ex-

ternal force, the total angular momentum remains constant). This deri-

vation is based on an analysis of spacecraft docking dynamics by Grubin

(Ref 10). While no particular maneuvers are described, the equation

presented and the method of its development can be applied to a wide

range of free-body dynamics problems.

As an example of a free-body dynamics problem, consider the free-

floating space worker in an initial position with both arms raised

vertically above his head. If he swings both arms (parallel to each

other) forward an angle , his torso will be tilted backward an an,le &
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The equation for the change in body attitude (developed in Appendix 0)

becomes for the AF "mean man*

0 .867583 arc-tan (0.86.507 -ton, (42)Zz

or for each revolution of the arms, &= 23.80.

Stability of Rotation

The moment-free motion of an unsymmetric rigid body with principal

moments of inertia Ix I I , Iz is an unsteady periodic precession and

nutation about the resultant angular momentum vector which is fixed in

space. Steady rotation exists only about the principal axis of maximum

or minimum moment of inertia, the principal axis of intermediate momenrt

of inertia being unstable. Rotation about the axis of maximum or mini-

mum moment of inertia is considered to be stable; that is, if the spin

axis deviates slightly from the resultant angular momentum vector, there

is no tendency for this deviation to grow. This statement can be made

only for a perfectly rigid body in the absence of external moments

(Ref 22).

Consider a non-rigid body rotating in space. Because of energy

dissipation, the kinetic energy of rotation will decrease with time.

The equation for the decrease in kinetic energy T is given by Thomson

(Ref 22:214) for a body of revolution (Ix = I) with principal moments of

inertia IxS I, I z to be

where 
I)

initial spin velocity

- angle between the spin axis and the angular momentum vector

-rate at which the angle 0-is changing
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Since T is always negative, 4 is negative for - 7 I and positive for

- I . If I z is the minimum principal moment of inertia, then 12

IxIX
is less than one, 0 is positive and & is increasing. Thus, the principal

axis of minimum moment of inertia is one of unstable equilibrium, and a

small deviation of the spin axis from the angular momentum vector will

increase due to energy dissipation.

Man is certainly not a rigid body and under cyclic stresses induced

by gyroscopic precession will dissipate energy. Hence, it can be con-

cluded that weightless man will possess only one stable axis of rotation.

This then is rotation about the principal axis of maximum moment of

inertia. When it is considered that man can change this axis by moving

his appendages, it is doubtful that flexible man will possess any Ptable

axis of rotation.

Application of A Torque

The application of a torque to some relatively fixed object will be

part of the function of the space worker performing assembly and repair

tasks. The resulting reaction of the free-floating worker will depend

upon how the torque is applied (i.e., the magnitude of the torque as it

varies over a short interval of time). This reaction has been studied

by Dzendolet (Ref 7); however, without exact knowledge of the nature of

the torque input, and under normal 1 "g" conditions.

In this section a general equation of motion is developed and

solved based on the assumption (which is experimentally validated and

described in Chapter IV for a short duration, impulse-like torque) that

the torque input varies as a lalf sine wave. Then

T( -TMs 2 it (44)
T
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where V- torque as a function of time
Tm maximum torque achieved

T E period of torque application
E -time

For rotation about one of the principal axes of inertia we have

T
where T moment of inertia

M angular acceleration

Assuming I is constant, we have after integrating

m T1 T Cos V (46)

and at t = T

(TM47)

SZTmT (48)
17 I

Equation 48 then yields the angular velocity at the end of the torque

application period.

Suppose the AF "mean mano reaches overhead to grasp a valve handle

(for instance, a fuel shut-off valve on the space station). What will

happen if he attempts to close the valve with a sudden twist, and the

valve is frozen and does not turn?

Assume the following conditions exist:

(a) The space worker is unrestrained

(b) The torque is applied about the z-axis (a principal axis)

If the principal moment of inertia about the z-axis is
IZ : 0.55 slo3-Wt

and the maximum torque developed is 2.71 ft.lbs over a period of

1.1 seconds, then by Eq 48
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0. o3(,G(0.55)

3.t5' rjLian's /secovt8

- 32.9 rewr

Hence, the space worker will be spinning about the z-axis at a rate of

32.9 rpm after the torque application.
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IV. L%erimental Results

The last phase of this study was concerned with experimental valil-

dation of some of the analytical results derived in Chapter III. Two

experiments were conducted by personnel of Orew Stations Section, Be-

havioral Sciences Laboratory, 6570th Aerospace Medical Research Labora-

tories, Wright-Patterson ARB, Ohio, under weightless conditions. Zero

gravity conditions were achieved for periods up to 30 seconds on-board

a USAF KC-l5 jet transport flying parabolic trajectories. All experi-

ments were recorded on motion picture film.

Stability Experiment

Object. This experiment was designed to demonstrate instability of

a non-rigid body rotating about the axis of minimum moment of inertia.

Procedure. The free-floating subject (holding position "a' Fig. 5

as rigidly as possible) was spun about the z-axis by means of a rope

wound around the waist. Part A: The subject held position "am through-

out the free rotation period. Part B: Two to three seconds after spin-

up, the subject raised one knee to induce a wobble to the spin.

Results and Discussion. Part A: Spins up to 120 rpm were achieved

and appeared to be stable for the short impact-free periods (5-8 seconds).

It was intended to perform the spins so that the body z-axis was

parallel to the pitch axis of the aircraft, to eliminate any cross-

coupling effects due to the rotating reference system. However, there

were practical difficulties in this method, and in order to get satis-

factory spins and photographic coverage, it was necessary to impart the

spins with the body z-axis parallel to the longitudinal axis of the
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aircraft. The cross-coupling effects apparently were small as no sig-

nificantly different results could be detected between the two spin

axis orientations.

Part B: When one knee was flexed, a wobble in the spin did result,

but the test area was not large enough to allow the subject to tumble

freely without striking parts of the aircraft. Naximum impact-free

periods of 5-6 seconds were not long enough to conclusively demonstrate

a change to stable rotation about the x- or y-axes. A typical run is

shown in Figure 10. The photographs were taken in sequence, left to

right, at 0.5 second intervals.

On two of the runs the subject spread both arms and legs during the

impact-free period and a decrease in rpm of 2.5 to 1 was observed.

Figure 10

Sequence Photographs of the Free-Rotation of a Subject'

Initially Spun About a Head-to-Toe Axis (Taken at 0.5 second intervals)

Torque Experiment

Object. This experiment was designed to determine the nature of

a short duration, impulse-like torque which weightless (and hence

frictionless) man can exert on a riaidly-mounted handle.
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Apparatus. A small beam fitted with strain gages was attached

inside a tubular handle 6 inches long and 3/4 inches in diameter. The

strain gages were instrumented into the aircraft oscillograph so that

strains produced deflections which were plotted as functions of time

on recorder paper. The system was calibrated so that the deflections

could be interpreted as torque applied to the handle.

Procedure. The weightless subject grasped the handle with his

right hand and applied, with near-maximum strength, a quick counter-

clock-wise torque of approximately one second duration. Part A: During

the torque application and resulting rotation, the subject held body

position "aO except that the right arm was extended over the head to

grasp the handle. Part B: During the torque application and resulting

rotation, the subject held a sitting body position (Indian fashion with

legs crossed) and grasped the torque handle with the hand, arm extended,

directly in front of the torso about shoulder level.

Results and Discussion. Two typical Torque vs Time plots are shown

in Figure 11. As can be readily seen, these curves closely resemble a

half sine wave. From aq 48 developed in Chapter III, the resultant

angular velocity can be calculated when the moment of inertia is known.

The moment of inertia is found by the methods of Chapter II. These

velocities are compared to actual velocities determined from motion

pictures of the experiment in Table VI. The agreement is as good as can

be expected when the sources of error are considered. The greatest error

arises from not being able to determine the exact axis of rotation (or

direction of the angular velocity vector), and hence, the moment of

inertia about that axis. This error could be as large as ±10%. Also,

39



GA/ Mech- 6 2-7

-3.5

40 - 3.0o l

-j30 -2.5

Z -2.0

20- 1.5 w

TIM a01SCN NEVL) . .

C31 ~1.0 c

I-

50 4.0

3.5
40

'30 2.5-'
z 30

20 1.5

0- -4.0

03.5o

40

0, '0

0 0V -0.5

-10 TIME (0.1 SECOND INTERVALS)

FIGURE II

TYPICAL PLOTS OF THE TORQUE THAT MAN CAN EXERT

WHILE WEIGHTLESS AS A FUNCTION OF TIME

40



GAs/ech-62-7

angular velocities determined by photographic means can varyt 2%. The

maximum error considering all sources should be less than t15%.

Table VI

Oomparison of Analytical and Experimental Angular Velocities
from the Torque Application Experiment

Run T  TM I Analytical Experimental

Number (seconds) (ft-lbs) (slug-ft2) (rad/sec) (rad/sec) Error*

2 1.10 2.71 C.55 5.45 5.59 -3.9%

5 1.00 3.34 1.05 2.02 1.86 +8.6%

6 0.88 3.75 1.05 1.99 1.86 +7.0%

*Analytical results compared to the experimental results

Oonversely, the moment of inertia can be calculated from Sq 48 wien

the measured angular velocity is used.

The maximum torques achieved during weightlessness averaged (for

six runs with two subjects) 66.6% of the peak torques under static

one g"H conditions.
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V. Concludin Statements and Recommendations

for Future Study

The mathematical model developed to represent weightless man is based

on the biomechanical properties of the human body. Since there are no

methods of determining many of these properties accurately from a living

subject, statistical data is used which is a function of the total body

weight. Body dimensions, however, can be measured for any given living

subject.

In Chapter II the transfer moment of inertia terms are shown to be

a very important part of the total moment of inertia. Since the transfer

term "md2 ' depends upon the square of the distance between the mass and

the inertia axis, it is more sensitive to variations in distance than to

mass vtriations. Therefore, a model based on anthropometry of a given

subject will reflect the dynamic response characteristics of that subject.

The statistical methods of estimating the other biomechanial prop-

erties (mass, mass center, and density) presented in References 1, 2,

4, and 6 are being refined and made more adaptable to living subjects by

the Anthropology Section, Behavioral Sciences Laboratory. Hence, in the

near future, methods of determining these properties from a living sub-

ject may be available.

The assumption that the human body consists of 14 rigid and homo-

geneous segments is a convenient, but not too realistic idealization.

However, for the intended application of the model to dynamics problems

facing weightless man, this assumption will not produce any great inac-

curacies. For instance, first space suits will be equipped with large

environmental backpacks and/or propulsion and stabilization systems
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which will not allow much flexing of the back. Therefore, the assump-

tion that the torso is rigid actually fits the physical situation.

A simplified approach is presented for calculating the new center

of mass location and moments of inertia when the model's position deviates

from the standing straight position (Fig 5 "a'). The resulting equations

can be easily represented electrically so that the human system parameters

can be programed into an analog simulator of a propulsion and stabiliza-

tion system for the space maintenance worker.

The model is based on a nude man in order to establish unencumbered

manis baselines (without hardware). Hardware, such as the space suit,

magnetic shoes, environmental pack, etc., can be included after man's

basic response characteristics have been investigated.

The analytical results are qualitative in nature and are intended

to offer a first approximation to the selected problems. The simplifying

assumptions are not, in general, too restrictive. For instance, the as-

sumption that man is a body of revolution so that Ix U - is almost

satisfied for many positions (note that for position 'aa I x = l.O46Iy

or Ix is 4.6% greater than 3i). Emch restricted problem has practical

application to the actual problems of the space worker. In summary,

these problems demonstrate the requirement for a propulsion and stabiliza-

tion device for the space worker.

The experimental results are preliminary in nature. However, it

can be concluded that the stability experiment can not be used to verify

the analytical results because of the short impact-free rotation period.

The torque experiment did successfully demonstrate the practicality of

the apparatus and the approach used. More data is required, however,

before the analytical results can be conclusively established.
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This study has been broad in scope and qualitative in the results.

Hence, any one of several phases of the study might serve as a specialized

thesis study area. Some suggested areas are outlined below.

Refine and validate the modelt Investigate the effect of more exact

representation of some of the larger segments (perhaps, use two frustums

of right elliptical cones to represent the torso). Compare the moments

of inertia of the model based on a particular individual to that experi-

mentally determined for the same subject. This experimental data will

become available in the near future.

Expand and generalize the dynamics problems: Investigate more

problems of dynamic response to bring in the effects of muscular reaction,

elasticity of the body, and damping. Generalize the selected problems

of this study.

Expand the torque experiment: Conduct closely-controlled torque

experiments with more subjects. Then determine the nature of the torque

transmission throughout the body.

44



GAWech/62-7

Bibliography

1. Barter, James T. Estimation of the Mass of Bdy Segments. WADC
Technical Report 57-260. Wright-Patterson AFB, Ohiot Wright Air
Development Center, April 1957. (ASTIA No. 118222)

2. Braune, W., and 0. Fischer. Treatises of the Mathematical-Physical
Class of the Royal Academy of Sciences of Saxony. Ntaber 7. Leip-
zig, 1889. (U.S. Army Air Forces, Air Materiel Comwand Translation
No. 379, Wright Field, Dayton, Ohio.)

5. Celentano, John T., and Harold S. Alexander. The Use of Tools in
Space- An Raperical Approach. IAS Paper No. 3_-I45-T39. New
York: Institute of the Aerospace Sciences, 1961.

4. Dempster, Wilfred Taylor. Space Requirements of the Seated Operator.
'AADC Technical Report 55-159. Wright-Patterson AFB, Ohiot Wright
Air Development Center, July, 1955.

5. Downey, Glenn L., and Gerald M. Smith. Advanced Dynamics for ai-
neers. Scranton, Pennsylvania: International Textbook Company, 1960.

6. Duggar, Benjamin C. "The Center of Gravity of the Human Body."
Human Faotors. 4:151-148 (June 1962).

7. Dzendolet, Ernest, and John F. Rievley. Man's Ability to App
Certain Torques While Weightless. ViADC Technical Report 59-94 .
Wright-Patterson AFB, Ohio: Wright Air Development Center, April,1959.

8. Grantham, William D. Effects of Mass-Loading Variations and Applied
Moments on Motion and Control of a Manned Rotating 8pace Vehicle.
NASA Technical Note D-80. Washingtons National Aeronautics and
Space Administration, May 1961. (ASTIA No. 255528)

9. Griffin, J. B., et al. 'A Discussion of the Design of a Propulsion
and Stabilization System for Man in a Cosmonotic Environment.'
Proceedings of the National Specialists Meeting on Guidance and
Control of Aerospace Vehicles. New York: Institute of the Aero-
space Sciences, 1960.

10. Grubin, Carl. Docking Dynamics for Rigid-Body Spacecraft. IAS
Paper No. 62-43. New Yorkt Institute of the Aerospace Sciences,
1962.

11. Hansen, Robert, and Douglas Y. Cornog. Annotated Bibliography of
Applied Physical Anthropology in Huan Engineering, edited by
H. T. E. Hertzberg, WADO Technical Report 56-50. Wright-atterson
AFB, Ohio: Wright Air Development Center, May 1958.

45



GAE/Mech-62-7

12. Hertzberg, H. T. E., G. S. Daniels, and E. Churchill. Anthropometry

of Flin Personnel-19-5. 1ADC Technical Report 52-521. Wri lht-
Patterson AFB, Ohio: Wright Air Development Center, September 1954.

13. Hudson, Ralph G., S. B. The Engineers' Manual (Second Edition).

New Yorks John Wiley and Sons, Inc., 19 55, pp. 89-94.

14. Kulwicki, P. V. Weightless Man: Self-Rotation Techniques Study I.

ML TDR 62- , 6570th Aerospace Medical Research Laboratories,

Aerospace Medical Division, Wright-Patterson AFB, Ohio, (in editing).

15. Petrov, V. Artificial Satellites of the Earth. Delhi, India:

Hindustan Publishing Corp., 1960, p. 124.

16. Scarborough, James B. Numerical Mathematical Analysis (Fourth Edi-

tion). Baltimore: Johns Hopkins Press, 1950.

17. Seale, Leonard K., and Ralph E. Flexman. "Research on a Self-
Maneuvering Unit for Orbital Workers." Proceedings of the IAS
Aerospace Support and Operations Meeting. New York: Institute of

the Aerospace Sciences, 1961.

18. Simons, John C., and Melvin S. Gardner. Self-Maneuvering for the

Orbital Worker. WADD Technical Report 60-748. Wright-Patterson

AFB, Ohio: Wright Air Development Division, December 1960.

19. Simons, John C., and W. Rama. A Review of the Effects of Weightless-

ness on Selected Human Motions and Sensations. A technical paper

presented at the AGAHD-NATO Aero Space Medical Panel Meeting, Paris,

France, July 1962. Wright-Patterson AFB, Ohio: 6570th Aerospace

Medical Research Laboratories, Aerospace Medical Division (AFSC),

April 1962.

20. Swearingen, J. J. Determination of Centers of Gravity of Man.

Final Report United States Navy Contract NAonr 104-51. Oklahoma
City, Oklahoma: Civil Aeronautics Medical Research Laboratory,

CAA Center, 1955.

21. Taylor, Craig L., and .. Vincent Blockley. "Crew Performance in a

Space Vehicle," in Space Technology edited by Howard S. Seifert.

New York: John Wiley and Sons, 1959, P. 50-17.

22. Thomson, William Tyrrell. Introduction to Space Dynamicsi New

York: John Wiley and Sons, Inc., 1961.

46



GAR/kech 62-7

Appendix A

Parametric Study of the Centroid Location

and

Moments of Inertia of a Frustum

The frustum of a right circular cone is chosen to represent the

upper and lower arms and legs because its centroid can be made to coin-

cide with the centroid of the segment it represents. The segments of the

body are assumed to be bodies of revolution with known centroid locations.

The location of the centroid becomes an important parameter in defining

the properties of the frustum. This appendix presents a derivation of

the equations for the centroid location and moments of inertia of a

frustum. The equations for the moments of inertia are then expressed in

much simpler form in terms of the centroid location. The mass, length,

and density of the frustum are left as parameters.

Centroid of a Frustum of a Right Circular Cone

The centroid of the body shown in Figure A-i is given by

- / __d__ (A-i)

fcIp
where

= gf%~d~(A-a)

and' S is the density (assumed to be constant at every point in the

body.) Then for a frustum of length P and mass m. , we have

A-1
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(A-5)

0 0

for

- R- (R-r ~j(A-4)

r Y
Z .dm

FIGURE A-I

FRUSTUM OF A RIGHT CIPCULAR CONE

Substituting Eq A-4 into Eq A-3 and integrating, we have

-m-- S (R\*Z+ Rr+ (A-)

Evaluating the numerator of Eq A-i between the limits from 0 to 9 , we

have after substituting in Eq A-2

A-2
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7r 2d (A-6)

0 0

Substituting Eq A-3 and Eq A-7 into Eq A-i, Eq A-i becomes

S( R2 +ZRr +3 rz  (A-8)

S+ Z() + (A-9)

I( + Zx + 3 ' (A-10)
- 9( I + a)+ (-

where

t r (A-1l)

R

Introducing now the non-dimensional location at the centroid

(A-12)

we have

/ I+ ZA + 3J
4 + (A-13)

or

j -- I (A-14)
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When r = 0 the frustum becomes a right circular cone. When r R the

frustum becomes a right circular cylinder. The ratio L will vary soR

that

and

71 - (A-16)

To insure that /x 0 , Eq A-14 must be

4 - I (A-17)
71 + Vr. /- I . z 41 71 -Z ...

Moments of Inertia of a Frustun of a Right Circular Cone

The moment of inertia about the I -axis of the element of mass shown

in Figure A-i is given by

T~/dL + zA..80' 0
where dI-x is the moment of inertia of the element about the -X'-axis

(see Fig. A-l) and drA is given by Eq A-2. Since the element of mass is

a thin circular disc, its moment of inertia about an axis through its

center of mass is given by

r'iJM = &it - (A-19)

Substituting Bqs A-2 and A-19 into Ik A-18 and carrying out the integra-

tion

A-4
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-X =Ixf (A-ao)

=S'id (Ri + R 3 r + Rzrz' +4 Rr 3 + r)

++- T + 3R- + 6r) (A-21)

After some rearranging, we get

ix Sir TR' F3 R~ 2. fl-- k
3 L2 -9

+ (I +3M + 6 ) (A-22)

where
T I + /k + (A-23

Eq A-5 can be written

_ V- R_ (A-24)
3

or

Rz : 3 (A-25)

A-5
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Substituting Zqs A-2
4 and A-25 into Eq A-22

+ + 3Ak+ 6 &) 9i (A-26)

Letting

4-] U3+ (A-27)

and

C I( [+ 3 A*+ 6 ' ) (A-28)

then

[A ) CI'] (A-29)

By the Parallel Axis Transfer Theorem

I'X = i _ .S. + M 8 ? (A-30)

then C.. -
(A-51)

Substituting Bqs A-10 and A-29 into the above equation

- A ' -I _r

+-1 1 + 4 Ak °  + + 1044- -4-4A (A-32-

A-6

52



GAZA*oh 62-7

L = ,[A()+ U ](A-33)

where

3 + + 4 A 10 A,*z 4 3 A- ) (A- 34 )
c3 0 l-Z /

NoW

I : dI (A- 5)

where

(A-36)

(A-37)

By an approach similar to that above, we get

-- (A-38)

Since the frustum is a body of revolution, then

I = IA-9)

In Eqs A-29, A-3, and A-38 the quantities A, 2 , and C are constant for

a given value of 77 . With the AFIT IBm 1620 Digital Computer and the

assistance of*P5of. R. T. Harling of the Department of MRthematics, the

values of A,% A , 1 , and C were calculated for intervals of 0.001 over

the range O.25 -0611:.500 . The results are presented graphically in

Figure A-2.

The following Fortran Computer Program was used, where R fl, U

* r, and P is the interval between successive values of R.

A-7
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ACCEPT, H, RIN
R - RIN
PI - 3.14159265

4 U - (4.*R-1.)/(].-2*R+(-12.*R*R+12.*R-2.)**0.5)
U2 - U*U
U3 - U2*U
U4 - U3*U
S - 1.+U+U2
A - ((S+U3+t4)*9.)/(20.*PI*S*S)
B - ((I.+4.*U+iO.*U2+4.*U3+U4)*3.)/(8O.*S*S)
C - ((].+3.*U+6.*U2)*$.1)/S
IF (SENSE SWITCH 2 ) 13, 14

13 PRINT 19,R,U,S,A,B,C
14 PUNCH 21,R,U,S,A,B,C

R- R+ H
IF (R-O.501) 4,18,12

18 STOP
19 FORMAT (/F 5.3,F1O.5,F11.5,3FI0.5)
21 FORMAT (F5.3,FIQ.5,FI1.5,3FI0.5)

END

Note that when 77= O.Z50 the frustum reduces to a right circular

cone, and when 71 = 0.500 the frustum becomes a right circular cylinder.

This is reflected by the equations for moments of inertia. For

example, when 710. 0 , 0, = i

Eqs A-27, A-28, and A-34 yield

A =0.1473 13 = 0.03750 C = 0.10000

Then Bqs A-5 and A-59 become

IXc.. 0[o.43z3(j -4 0.0375-0fl

----. i '1 2

A-9
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Now the mass of a right circular cone is given by

m _T_ r?_ 1.047S 9
3

so that Eso= m [o.iL3Z5 I.o78 S. r) + 0.0375"0

nm(O.11OOr 0.03751')

-- 3_M r 7. +

and 
0.14323 Zxj.047g

0.3000 mr7

I0

These are the exact equations for moments of inertia of a right circular

cone*

Similarly, when 7 = 0.500, 1 ) T (- 3

then A 0.07957 B = 0.08333 C 0.3333

and

'1-.g :: ryl 0.07q 57J. 0-.033 k
MA'. (0 0,

Now the mass of a right circular cylinder is given by

& rrrzk

A-10
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so that

I .- M - .07q5 7  1) + 0.0o 333kj

* - [D. Z500 r? + C), 0 9 -3 .37

- O.5OOO r r

2

These are the exact equations for moments of inertia of a right circular

cylinder.°

Find the local moments of inertia of the upper arm of the Air Force

mean N

From Eqs A-14, A-27, A-54, and A-28, or Figure A-2
= . ,754 ("  A O.O3

Q .0800b C =0o,2.7016

Eqs A-29, A- a.nd A-38 become

S= .;Moo3 (.)+ o.o3006Q2

A-I
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I = ' :0.i6q8 ..

Also from Table D-I

-- 70.0 1b-s ff3

* : 13.0 ;A.

z5.) 0 16s

then the moments of inertia about the mass oenter are found to be

S.io [O.OS349 A5.10 + O.O S006 13.01)

I2.

= 0.0157 slu 9 -4t2z

(2 -7 0. 0 .0 x 1 -

=- 0.00 i73 slu-it+z

A-12
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Appendix B

Equations of Motion for the Thrust Xtsalixnment Problem

Symbols

X 9, A Body Axis System Coordinates (coinciding with the
principal axes)

XY,Z Fixed or Inertial Axis System
A A A L.J TS,j Unit Vectors corresponding to the Body Axis System

Unit Vectors corresponding to the Inertia Axis System
1, 1,,I Principal Mass Moments of Inertia

Conditions

The following conditions are assumed for solution of the equations

of motion for the thrust misalignment problem.

1. Rigid Body
2. Constant mass uml
3. Constant Moment about the y-y Body Axis
4. Constant Thrust "Fu in the direction of the x-x Body Axis
5. Ix a Iy

Using a vector notation

Force Vector F = : (B-l)

Position Vector T = Ilk (B-2)

Moment Vector F = T-X (B-3)

X aF (B-4 )

Bti =MXI+MIT+M-IM (B-5)

Therefore Mt = M- = 0 (B-6)

and my = eF (-7)

Then Euler's Equations

my* IY. 6 ( Y W1~oL, (B-.8)

M= IYL)+ (1, - IjWL4(B-9)

Mi= I 2 l 1tWL! (B-10)

B-1
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become

1: : I ' - (-12)
o = i oh (3-1))

From Eq B-13

jiLj (B-14)

If the body Is initially at rest

and the constant is zero. Eqs B-11 and B-12 become

0 = Ix . (B16)

F = l b (B-17)

By the same reasoning applied to Eq B-13, Eq 3-16 yields

X 0 (B-18)

Also Eq B-17 yields

Wy (B-19)

for zero initial conditions.

Now

Z = + Wy + e (B-20)

but by Eqs B-15, B-18, and B-19

- __ Ft (B-21)

When the products of inertia are zero, angular momentum about the

mass center of a rotating body is given by

J_ LjX) A + lyLJ5 WY ~ t 1  (B-22)

Substituting Eqs B-15 and B-18 into Eq B-22

JYc s (B-23)

hence = 0 (B-24)

B-2
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Now the moment about the mass center is given by

t ~ + 3 + Xk (B-25)

After substituting and carrying out the indicated operations

* ~EVIj =±w jxy (B.-26)

:( -27)

Therefore, this moment increases the magnitude of the angular momentum,

but does not change its direction* Hence, the angular momentum and

angular velocity vectors remain parallel and fixed (in direction) in

space. The only rotation is, then, a spin about the y-y body axis which

also remains fixed (in direction) in space. The thrust is then applied

in a plane perpendicular to the y-y axis and the resulting translation

is in the same plane. If the body axis system is initially aligned with

the inertial axis system, then the x-z body plane will remain in the X-Z

inertial plane. The only motion between the two axiA systems is trans-

lation in the Z-Z inertial plane and rotation about the y-y body axis.

The unit vector transformation becomes

= o (B-28)

T. (B-29)

where - is the angle between the z-z and Z-Z axes (or rotation between

the two axis systems).

By Newton's Equation

= rv(~Z . )(3-30)
F : L- ,. +(-1

but = Z, FO 5 - T. i "s - (B-32)

or 2.F 0519 P5n CI 2o ±~Y. + rviQ a,, (3k5

therefore COSD MO,%. (B-34)

61



*As/Mch-62-7

-Fs;n o l. (B-36)

and o - cos. (B37)
r-

J 0  (B38)

° F sin 4 (B-39)

Now the angular velocity of the body-fixed axis system with respect to

the inertial system is

- I (B-40)

therefore (B-42)

and integrating

Ft (B-43)

for O:0 at t = o ,and

W = Zly(B-44)

Substituting for & in Eqs B-37 and B-39 and integrating, the coordinates

of the trajectory become

-OdX (3-4)

,V= 0 (B-46)

-20- - F irkea at (B-47)

Eqs B-45 and B-47 can be nondimensionalized by substituting

T t' (B-48)
V= -Xo (B-49)

: o(3-so)

B-4
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Then

X = ffC0 (B-51d)r
z = -fsIn d'rdT (B-.52)

Note also

AXAxd= f cos7 (-?
dX/8 = -s " (B-5 )

j Z/T= 4 2 TdT7 (B-54)

Solution

Equations B-51, B-52, B-53, and B-54 could not be integrated to get

a closed form solution. However, a numerical solution was achieved by

applying the Runge-Kutta Method (Ref 16:299) and computing the functions

point by point on the AFIT IBM 1620 Digital Computer. The following

Fortran input program was used where

T r-T H w Interval between points
X - X XP dX/d'r
Z Z ZP S dZ/d-

and the NINO after the above symbols refers to initial conditions. The

results are given graphically in Figures B-1 and B-2.

ACCEPT, H, TIN, XIN, XPIN, ZIN, ZPIN
T - TIN
X - XIN
Z - ZIN
XP - XPIN
ZP - ZPIN
1 PRINT T, X, XP, Z, ZP
F1 - H * CiS(T*T)
F2 - H * COS((T + .5 * H)** 2)
F3 - F2
F4 - H * COS((T + H)** 2)
DELX - H * (XP + (F + F2 + F3)/6.)
DELXP - (F1 + 2.*(F2 + F3) + FM)/6.
X -X + DELX
XP - XP + DELXP

B-5
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F1 - - H * SIN(T*T)
F2 - -H * SIN((T + .5*H)**2)
F3 - F2
F4 - -H * SIN((T + H)**2)
DELZ - H * (ZP + (FI + F2 + F3)/6.)
DELZP - (Fl + 2.*(F2 + F3) + F4)/6.
Z - Z + DELZ
ZP - ZP + DELZP
T-T+H

GO TO I
END

The solution is then

x 1 "nX (B-55)
z 7 Z..(B-56): -n '' (B.-57

A (B-58)
.4 = k2 ( B -5 9 )

0 2kt ( B-6o)

where
-n ZIY (B.-61)

Example

The AF "mean man' is equipped with a thrust device rigidly attached

to his back such that its thrust vector passes through his center of mass

when he is in position 'a" (Fig. 5). However, just before firing the

device (capable of generating 10 lbs. of thrust), he changes to position

Nb. What is the resulting motion, assuming the conditions previously

listed apply?

From S 24, Chapter II, and the tabular data in Appendix D

M

(2 [1.16(14.672 + 7.4o6)] + 2 [.o(8.138 - 0.114)]

+ 2[16.53(l.355 + 11.406)] + 2[8.0 5 (2.181 + 27.286)1

+ 2[2.39(-8.256 + 37.716)] 162.22

6.977 in.
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For the AF Omean man"

M = 5.0579 slugs 2
I y- 2.9445 slug-ft

Then Eq B-44 yields

6.97 x 102
k = 12 = 0.9875/sec2

2 x 2.944.5

and from Eq B-61

-= 2 x 2.944- = 2.010.5/ft
12 x 5.0579

Eq B-48 yields

T. 0.994t

and Eqs B-55 through B-60 become

x = 2.01X 2.00
z = 2.01Z * 2.00Z
9 . 0.987t 2  - .975t

The values of these functions are given for various times in

Table B-I.

Table B-I

Numerical Results of the Misaligned Thrust Problem

t x x z
(seconds) (feet) (ft/sec) (feet) (ft/sec) (degrees) (rpm)

1.008 o.160 1.900 -0.162 -0.649 57.5 19.2
2.016 2.620 0.924 -1.572 -1.610 230.0 58.5
3.022 3.830 1.411 -2.740 -1.553 516.o 57.5
5.030 6.280 1.223 -5.300 -1.0o56 1450.9 95.9

1o.o60 12.590 1.202 -11.590 -1.167 5720.0 191.4

B-9
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Appendix C

Free-k& Dynamics Problem

Symbols

, Unit vectors corresponding to the x, y, z Body-Fixed
Axis System at the mass center of mass m

,, z E, Unit vectors corresponding to the X, Y, Z Body-Fixed
Axis System at the mass center of mass 1

P, P Position vectors from the hinge point to the individual
mass centers

6) Angular velocity of mass m
Ai Angular velocity of mass X
_4 Net angular velocity of the system
W(. Total angular momentum of the system about the mass center
H Angular momentum of mass X
I Angular momentum of maaa m
I Moment of inertia of mass M about its mass center
i Moment of inertia of mass m about its mass center

Derivation of Equations

The system of two rigid masses shown in Figure 0-1 is hinged at

point Ohl so that the mass centers and point "ho remain in the same

plane. Assume tiat initially

= consfiN,'lt .o (0-2)

H, 0 (C-3)

and there are no external forces. From Figure 0-1 it can be seen that

R~ a E. (c-4)

6 -bcosS, bsin'z (0-5)

j : 3  (0-6)

-JZ E3  (C-7)

Z, = "o = 3 (c-8)

1 -af. 3  (0-9)

SI) (C-10)

C-I
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* MASS CENTER OF EACH MASS (c.m.)

*MASS CENTER OF THE TOTAL SYSTEM (c.c.m.)

e MASS M

FIUe,C-

VECORDIGRM ad OD-FXEDAXS YSEM

0-h
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Since c.c.m. is the mass center of the whole system

M'A + Mf 0 (-1

or

__ (0-12)

where E is the mass ratio
M

Now define

r + - (0-15)

Solving Eqs 0-12 and 0-13 simultaneously
: - ,+ )-'6(c0014)

(C-1.5)

The total momentum of the system can be written (Ref 10)

H, = H + M qx~ A l k -i rnT KF (0-16)

and by Eq 0-

0 = H + I xR, + + mrxF (0-17)

Substituting Eqs 0-9, 0-10, 0-14, and 0-15 into Eq 0-17, then

-4- m-L(I+EY, x ( + ;V 1 0

where

S " -(0-19)

CL ((0-20)

Now

-C P(0-2+(-b1sjY (0.2)

and 9. C + q (0-23)

Eq 0-23 becomes after simplification

(,u.-RS~)bsi,S +[R + 01f-#.& ) Cos~j (0-24)

0-3
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Substituting Eq C-24 into 0-18 and carrying out the indicated operations,

Eq 0-18 becomes

L[(+1)j -iA&j = (M6 +r =y[)(t ±<Z[-( 6+1, +ZabcosS)-l

+ ( b2 + ab cos 9)Ao] f 3  (C-25)

Equating the scalar components and combining, Eq 0-25 reduces to

= [; -i- b (b+ acos~) (i +~ (C-26)

or C= +.'M-(C-27)

where I(W: and i)are instantaneous moments of inertia and

1c(,: ~I + . + (a" + 6,x+ a o. s 9) rA(i +E:) (C-28)

(4-tz. I -+ 6 b-cosS)M(I+E)' (c-29)

Let jL L-= 4 (-30)

; (+-) (C-31)

then d MO

Now = ,,A.t (C-52)

or dS dt (0-33)

Substituting Eq C-33 in Eq 0-51 and integrating

4 (C-34)

Equations C-28 and 0-29 can be written

t+.) = A+a-os (o-36)

0-4
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where A = + mb (i + ' (C-37)

QBAM ( I +c-) (G-38)
C II + ; + ('+b )rM(+e4' (C-39)

D =Zo. a6 +CrA (c-4o)

and are constant for a given problem. Equation 0-34 then becomes

C + D cos (-41)
0

Integrating the right hand side of Eq 0-41

+ (2 - C arf ankan(0-42)

g + I arctn(l,an

+ \I-(o) (C-43

where

+ rn7 + (C-44)

12= ZA-C ! -I +m,e"b-J(C-45)

C + D V IA (c-46)

- + I + ((+b)rn(I+6)-'+ 2-,4(+ (c-47)

Hence, the change in the attitude of the large mass "M" is a function

of the rotation 6 of the small mass "m'.

Example

If the small mass "m* represents both arms (includiDg the hands)

of the AF Imean man, and "M" represents the total mass less that of

Kim, Eq 0-43 can be used to calculate the change in body attitude when

the arms are rotated. Then, from the tabular data in Appendix D, and

the above equations

0-5
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a 1.511 ft
b = 0.988 ft

= 0.1294
u 0.2508 slug-ft2

I a 8.6811 slug-ft 2

II * 10.4866 slug-ft2

12 0 -9.0980 slug-ft2

I (o) a 12.1223 slug-ft 2

and

a _ - o.8676 arctan (0.86507 tan 4)
for = -600

a = 1800 - 0.8676 (1800)

= 2.840

C-6
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Appendix D

TABULAR DAT

Table D-I
Biomechanioal Properties of the Segments

of the AF 4Mean Man'

Centroid
Segment Weight Density Length Location

(pounds) (lbs/ft) (inches) (% length)

Head 11.20 71.6 1 0.04a 50.0

Torso 78.90 68.6 2 4 ., 6 a 50.0

Upper Arm 5.10, 70.0 13.0oa  43.6 b

Lower Arm 3.05c  70.0 10.01P 43.0 b

Hand 1.160 71.7 5.69 50.0

Upper Leg 16.5 68.6 15.80 43.3 b

Lower Leg 8.050 68.6 15.99a 4 . b

Foot 2.59 c  68.6 2.73g 50.0

a - Ref 12 b- Ref4
c - Mr. C. Z. Clauser, Anthropology Section, Aero-Med Research

Laboratories

D-1
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Tabla D-II
Coordinates of the Segment Hinge Points and Mass Centers

Hinge Point Coordinates (Inches)
and Symbol*

x Y z

Neck *A 0 0 59.08

Shoulder OB 0 7.88 56.50

Elbow 0 0 7.88 45.50

Hip #D 0 3.30 34.52

Knee #E 0 3.30 18.72

Mass Center
and Symbol*

Head & 10 0 64.1o

Torso S 2 0 0 46.80

Upper Arm 03 0 7.88 50.85

Lower Arm *4 0 7.88 59.20

Hand 05 0 7.88 51.68

Upper Leg @6 0 5.30 27.o8

Lower Leg @ 7 0 3.30 11.80

Foot @ 8 2.45 3.30 1.37

*Symbols Indicated in Figure 2

D-2
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Table D-III
(To be continued)

Moments of Inertia of the Segments
for Two Positions*

Segments#

Head Torso Upper Lower
Arms Arms

Ix Position a 0.0183 1.0000 0.0157 0.0056

'i' Position b 0.0183 1.0000 0.0157 0.0044

md2  Position a 1.5114 1.0125 0.2199 0.0405
Position b 0.7859 0.0092 0.0932 o.o47

Ix  Position a 1.5297 2.0125 0.2356 o.0461
Position b 0.8042 1.0092 0.1089 0.0451

I Position a 0.0183 0.9300 0.0157 0.0056
Y"1 Position b 0.0183 0.9300 0.0157 0.0056

md2  Position a 1.5114 1.0125 0.1517 0.0000
Position b 0.7950 0.0734 0.0292 0.0002

3 Position a 1.5297 1.9425 o.1674 0.0056
Position b 0.8133 1.004 0.0449 0.0058

I Position a 0.0124 0.2300 0.0018 0.0008
zc. Position b 0.0124 0.2300 0.0018 0.0020
2

md Position a 0.0000 0.0001 0.0682 0.0405
Position b 0.0091 0.0642 0.0723 0.0405

Position a o.oi24 0.2501 0.0700 o.o41
Position b 0.0215 0.2942 0.0742 0.0426

_ _ _ _ _ _ _ _ _ _ _ _ _1 _ _ _ _ _ _ _ _ _ I__ _ I

Positions " and "b" are shown in Figure 5

All values are in Slug-ft2

4

D-3
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Table D-III
(Continued)

Moments of Inertia of the Segments
for Two Positions*

Segments

Hands Upper Lower Feet Total
Logs Legs

Ix Position a 0.0004 0.0776 0.0572 0.0006 1.2927Position b 0.0004 0.0620 0.0572 0.0006 1.2589

md2  Position a 0.0292 0.4964 1.5114 0.7588 8.1965
Position b 0.0505 0.1496 0.0588 0.1252 1.7907

I x  Position a 0.0296 0.5740 1.5486 0.7594 9.4890
Position b 0.0507 0.2116 0.0960 0.1258 3.0496

Iy.. Position a o.ooo4 0.0776 0.0372 0.0028 1.,--69

Position b 0.0004 0.0776 0.0372 0.0028 1.2269

md2  Position a 0.0137 o.4582 1.2925 0.7561 7.8284
Position b 0.0188 0.1190 0.1015 0.1560 1.7176

I Position a o.ol41 0.5558 1.5297 0.7589 9.0555
Position b 0.0192 0.1966 0.1587 0.1588 2.9445

Izc, Position a 0.0004 0.0154 0.0037 0.0028 0.2922

Position b o.0004 0.0310 0.0057 0.0028 0.5258

md2  Position a 0.0155 0.0582 0.0188 0.0085 0.3797
Position b 0.0195 0.0459 0.0804 0.0420 0.6746

I z  Position a 0.0159 0.0556 0.0226 0.0115 0.6719
Position b 0.0199 0.0769 0.o841 0.0448 1.0004

Positions law and "b u2 are shown in Figure 5, and all
values are in Slug-ft2

D-4
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